2016-2017第一学期复变函数期末考试
一、求\(\displaystyle \int_{C}\dfrac{2z^2-z+1}{(z-1)(z-3)}\),其中\(C:|z|=2\).
二、\(f(w)\)在\(\{w|1<|w|<+\infty\}\)内解析,证明:\(\displaystyle \int_{C}f(\dfrac{1}{z^2})\mathrm{d}z=0\).
三、将\(\dfrac{1}{z(z-1)}\)在\(\infty\)处洛朗展开,并判断奇点类型\((1<|z|<+\infty)\).
四、证明:\(f(z)\)以\(z_0\)为\(n\)阶极点\(\Longleftrightarrow\)存在\(\varphi(z)=(z-z_0)^nf(z)\).
五、
(1)写出\(f(z)\),\(f'(z)\)在邻域\(B_2(0)\)的柯西积分公式.
(2)已知\(|f'(z)|\leqslant 2M\),若\(f(z)\leqslant M\),\(\forall z \in \partial B_2(0)\),证明\(f'(z)\leqslant 2M\),\(\forall z \in B_1(0)\).
(3)\(f'(z)\)在\(B_2(0)\)有界还是无界?
六、已知\(f(z)\)的零点和极点都在邻域\(B_1(0)\)中.
(1)写出\(f(z)\)在\(B_1(0)\)上的幅角原理.
(2)证明\(N(f+g,B_1(0))-P(f+g,B_1(0))=N(f,B_1(0))-P(f,B_1(0))\).
(3)\(\sqrt[n]{f(z)}\)不以\(\infty\)为支点,则\(n\)与\(N(f,B_1(0))-P(f,B_1(0))\)有什么关系?
Last update: November 2, 2023